

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL

PROGRAMA DE ENSINO

1. INFORMAÇÕES:

1/1/1/014/11/4/025/		
Disciplina:	MECÂNICA DOS SÓLIDOS I	
Código:	ECV 5215	Natureza: Obrigatória
Horas aula/semana:	5 (cinco)	Horas aula / total: 90
Créditos teóricos:	3 (três)	Créditos práticos: 2 (dois)
Pré-requisito(s):	MTM 5162 e FSC 5132	
Oferta (Curso):	Engenharia Civil e Eng. Produção Civil	

2. OBJETIVOS:

Objetivo terminal:	Introduzir os fundamentos básicos da Mecânica dos Sólidos com
	aplicações em estruturas isostáticas, dando-se ênfase a estruturas
	reticuladas planas.

Objetivos específicos:	Introduzir ao aluno os conceitos básicos de Mecânica dos
	Sólidos, com ênfase em Mecânica das Estruturas, cujo
	objetivo é conhecer o comportamento mecânico das
	estruturas, isto é obter as deformações e esforços internos de
	todos os seus pontos quando submetidas a ações externas.
	Iniciar o aluno em problemas de dimensionamento e verifica-
	ção à segurança de peças estruturais e estruturas simples.

3. CONTEÚDO PROGRAMÁTICO:

1.	Introdução
	1.1 Tipos de estruturas.
	1.2 Ações externas.
	1.3 Equações de equilíbrio estático.
	1.4 Vinculação.
	1.5 Reações de apoio.
2.	Esforços solicitantes.
	2.1 Método das seções.
	2.2 Diagramas de esforço axial, esforço cortante e momento fletor.
	2.3 Relações entre carga, esforço cortante e momento fletor.
	2.4 Aplicações: Vigas, Colunas e Treliças.
3.	Esforço axial
	3.1 Tensões e deformações.

- 3.2 Tipos de material curva tensão x deformação.
- 3.3 Lei de Hooke.
- 3.4 Energia de deformação.
- 3.5 Variação de temperatura.
- 4. Cisalhamento puro
 - 4.1 Tensões e deformações
 - 4.2 Ligações de chapas rebites, pinos e parafusos.
 - 4.3 Energia de deformação.
 - 4.4 Teorema de Cauchy.
- 5. Propriedades geométricas de superfícies planas
 - 5.1 Centro de massa.
 - 5.2 Momento de 1a ordem e de 2a ordem.
 - 5.3 Teorema de Steiner.
- 6. Flexão simples
 - 6.1 Distribuição de tensões e deformações normais na seção.
 - 6.2 Distribuição de tensões de cisalhamento.
 - 6.3 Aplicações em vigas com diversos tipos de seção.
- 7. Flexão composta normal e oblíqua
 - 7.1 Superposição de efeitos.
 - 7.2 Distribuição de tensões e deformações normais na seção.
 - 7.3 Aplicações em pilares com diversos tipos de seção e carregamentos.
 - 7.4 Núcleo central de inércia.
- 8. Torção
 - 8.1 Barras de seção circular cheia e vazada.
 - 8.2 Distribuição de tensões de cisalhamento na seção; deslocamento angular.

4. BIBLIOGRAFIA:

Beer, F. P. & Jonhston, Jr., E.R. - Resistência dos Materiais, McGraw-Hill, 1989

Mori, D.D. e Correa, M.R.S. - *Exercícios Prop./Resolv. de Resistência dos Materiais*, Fascículo I, Publicações 032/93 e 044/87, Escola de Engenharia de São Carlos, USP, Departamento de Estruturas, São Carlos, São Paulo, 1987.

Nash, W.A. - Resistência dos Materiais, Problemas resolvidos e propostos, 3ª edição, Editora McGraw-Hill Ltda., São Paulo, 1992.

Popov, E.P.- Introdução à Mecânica dos Sólidos, Ed. Edgar Blucher, S. Paulo, 1978.

Schiel, F. - *Introdução à Resistência de Materiais*, Ed. Harper & Row do Brasil, São Paulo, 1984.

Timoshenko, S.P. e Gere, J.E. - *Mecânica dos Sólidos, Vol. I,* LTC Editora Ltda., São Paulo, 1983.

Timoshenko, S.P. - Resistência dos Materiais, V.I, LTC Ed. Ltda., São Paulo, 1976.